
Ленинский пр-т, 32а
I. Что такое параметр?
В школьных учебниках определения параметра нет, в толковых словарях оно дается неоднозначно. Нас же будет интересовать значение термина «параметр» с точки зрения математики. «Параметр (гр. Parametron-отмеривающий) – математическая величина, входящая в формулы и выражения, значение которой является постоянным в пределах рассматриваемой задачи. Переменные а, b, c, …, k, которые при решении заданий считаются постоянными, называются параметрами, а сами задания называются заданиями, содержащими параметры» То есть, если в уравнении (неравенстве), некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение (неравенство) параметрическим.
II. Что означает «решить задачу с параметром»?
Как начинать решать такие задачи? И что означает «решить параметрическую задачу»? Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства: привести заданное уравнение (неравенство) к более простому виду, например, разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д. Решая такие задания нужно множество раз обращаться к его текстовой части с целью выполнения сформулированного там условия.
Проще говоря, решить задачу с параметром – значит указать, при каких значениях параметров существуют решения и каковы они.
III. Каковы основные типы задач с параметрами?
1. Уравнения (неравенства), которые надо решить либо для любого значения параметра, либо для значений параметра, принадлежащих заранее оговоренному множеству.
2. Уравнения (неравенства), для которых необходимо определить количество решений в зависимости от значения параметра.
3. Уравнения (неравенства), для которых требуется найти все значения параметра, при которых указанные уравнения (неравенства) имеют заданное число решений ( или не имеют решений, или имеют бесконечно много решений).
4. Уравнения (неравенства), для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.
IV. Каковы основные способы (методы) решения задач с параметром?
Способ I (аналитический). Это способ применения стандартных операций при решении уравнений (неравенств) без параметра. При решении заданий аналитическим способом требуется знать большой объем математической информации и уметь грамотно это применять.
Способ II (графический). Наглядный способ решения! Суть его заключается в том, что в зависимости от задачи (с переменной x и параметром a) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a). Естественно, что для этого просто необходимо знать типы элементарных функций (степенные, показательные, логарифмические, тригонометрические, обратные тригонометрические), их свойства и графики.
Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После проведенных упрощений возвращаются к исходному смыслу переменных x и a и заканчивают решение.